

Leaders in Watershed Solutions

# Environmental Flows - Validation

BBASC Meeting December 9, 2014

#### Overview

- Funded through Texas Water Development Board (\$200K) and the San Antonio River Authority (~\$30K)
- Working with:
  - Bio-West Inc.
  - Baylor University
  - Texas State University
  - Texas A&M University
- Brazos Project



#### Overview

- Project goal is to enhance the understanding of flow-ecology relationships and develop a methodology for testing established flow standards
- Primarily interested in how pulse flows affects biology



### Overview

- Aquatic
- Riparian
- Fish Recruitment (Otoliths)
- Oxbow Connectivity



# Study Sites



### Timeline





# Accomplishments

- Reductions in flow (base and HFP):
  - slackwater organisms













# Accomplishments





# Accomplishments Riffle and Run habitats

- Fish community structure
  - Richness, relative abundances, densities
  - Native vs. non-native
  - Swift water specialists vs. slackwater specialists
  - Food consumption
  - Energy into reproduction
  - Condition



## Accomplishments Riffle habitat

- Aquatic insect community structure
  - Richness, relative abundances, densities
  - Swift water specialists vs. slackwater specialists

Mussel community structure



# Accomplishments Riffle and Run habitats

- Habitat responses:
  - Shift in substrates (silt, gravel, cobbles)
  - Shift in embeddedness
  - Depth and current velocity



## Accomplishments Fish recruitment

#### Otolith aging







## Accomplishments Riparian habitat

- Riparian vs. upland species success
- Seedling
  - Distribution/germination and survival
- Sapling
  - Distribution, recruitment, and survival
- Mature tree survival



# Indicator species

- Black Willow (Salix nigra)
  - Seed deposition early spring through summer

- Box Elder (Acer negundo)
  - Fall/overwinter

- Green Ash (Fraxinus pennsylvanica)
  - Spring and Fall/overwinter









# Accomplishments Oxbow connectivity





# Accomplishments Oxbow connectivity

Water levels to maintain connectivity

Contribution to riverine diversity



### Potential Outcomes

Table 4.1-15. GSA BBASC Environmental Flow Regime Recommendation - Guadalupe River at Cuero<sup>49</sup>

| Overbank<br>Flows          | Qp: 45,400 cfs with Average Frequency 1 per 5 years<br>Regressed Volume is 869,000<br>Duration Bound is 91 |               |     |                                                                                                                |               |     |                                                      |               |     |                                                                                                            |             |     |
|----------------------------|------------------------------------------------------------------------------------------------------------|---------------|-----|----------------------------------------------------------------------------------------------------------------|---------------|-----|------------------------------------------------------|---------------|-----|------------------------------------------------------------------------------------------------------------|-------------|-----|
|                            | Qp: 24,700 cfs with Average Frequency 1 per 2 years<br>Regressed Volume is 406,000<br>Duration Bound is 64 |               |     |                                                                                                                |               |     |                                                      |               |     |                                                                                                            |             |     |
|                            | Qp: 16,600 cfs with Average Frequency 1 per year<br>Regressed Volume is 247,000<br>Duration Bound is 50    |               |     |                                                                                                                |               |     |                                                      |               |     |                                                                                                            |             |     |
| High Flow<br>Pulses        | Qp: 4,610 cfs with Average<br>Frequency 1 per season<br>Regressed Volume is 55,300<br>Duration Bound is 26 |               |     | Qp: 8,870 cfs with Average<br>Frequency 1 per season<br>Regressed Volume is<br>110,000<br>Duration Bound is 32 |               |     | Qp: 2,110 cfs with Average<br>Frequency 1 per season |               |     | Qp: 5,200 cfs with Average<br>Frequency 1 per season<br>Regressed Volume is 54,700<br>Duration Bound is 23 |             |     |
|                            | Frequency 2 per season                                                                                     |               |     | Qp: 3,370 cfs with Average<br>Frequency 2 per season<br>Regressed Volume is 31,800<br>Duration Bound is 18     |               |     | Frequency 2 per season                               |               |     | Qp: 1,730 cfs with Average<br>Frequency 2 per season<br>Regressed Volume is 14,100<br>Duration Bound is 13 |             |     |
| Base Flows<br>(cfs)        | 980                                                                                                        |               |     | 940<br>680<br>410                                                                                              |               |     | 800<br>600<br>390                                    |               |     | 870                                                                                                        |             |     |
| Subsistence<br>Flows (cfs) | 130                                                                                                        |               |     | 120                                                                                                            |               |     | 130                                                  |               |     | 86                                                                                                         |             |     |
|                            | Jan                                                                                                        | Feb<br>Winter | Mar | Apr                                                                                                            | May<br>Spring | Jun | Jul                                                  | Aug<br>Summer | Sep | Oct                                                                                                        | Nov<br>Fall | Dec |



### Potential Outcomes





## Benefit for BBASC





### Benefit for BBASC





## Benefit for BBASC



